Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(37): 25603-25618, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721108

RESUMO

Near-edge X-ray absorption mass spectrometry (NEXAMS) around the nitrogen and oxygen K-edges was employed on gas-phase peptides to probe the electronic transitions related to their protonation sites, namely at basic side chains, the N-terminus and the amide oxygen. The experimental results are supported by replica exchange molecular dynamics and density-functional theory and restricted open-shell configuration with single calculations to attribute the transitions responsible for the experimentally observed resonances. We studied five tailor-made glycine-based pentapeptides, where we identified the signature of the protonation site of N-terminal proline, histidine, lysine and arginine, at 406 eV, corresponding to N 1s → σ*(NHx+) (x = 2 or 3) transitions, depending on the peptides. We compared the spectra of pentaglycine and triglycine to evaluate the sensitivity of NEXAMS to protomers. Separate resonances have been identified to distinguish two protomers in triglycine, the protonation site at the N-terminus at 406 eV and the protonation site at the amide oxygen characterized by a transition at 403.1 eV.


Assuntos
Amidas , Peptídeos , Eletrônica , Ácido Nitrilotriacético , Oxigênio , Subunidades Proteicas , Raios X
2.
Commun Chem ; 5(1): 42, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697752

RESUMO

Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.

3.
Chem Sci ; 12(11): 3966-3976, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-34163667

RESUMO

The local electronic structure of the metal-active site and the deexcitation pathways of metalloporphyrins are crucial for numerous applications but difficult to access by commonly employed techniques. Here, we applied near-edge X-ray absorption mass spectrometry and quantum-mechanical restricted active space calculations to investigate the electronic structure of the metal-active site of the isolated cobalt(iii) protoporphyrin IX cation (CoPPIX+) and its deexcitation pathways upon resonant absorption at the cobalt L-edge. The experiments were carried out in the gas phase, thus allowing for control over the chemical state and molecular environment of the metalloporphyrin. The obtained mass spectra reveal that resonant excitations of CoPPIX+ at the cobalt L3-edge lead predominantly to the formation of the intact radical dication and doubly charged fragments through losses of charged and neutral side chains from the macrocycle. The comparison between experiment and theory shows that CoPPIX+ is in a 3A2g triplet ground state and that competing excitations to metal-centred non-bonding and antibonding σ* molecular orbitals lead to distinct deexcitation pathways.

4.
Chemistry ; 27(48): 12371-12379, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34137472

RESUMO

We investigated the photoionization and fragmentation of isolated metal protoporphyrin IX cations (MPPIX+ with M=Fe, Co, Zn) by means of vacuum-ultraviolet (VUV) action spectroscopy in the energy range of 8.5-35 eV. Experiments were carried out in the gas phase by interfacing an electrospray ionization tandem mass spectrometer with a synchrotron beamline. The mass spectra and partial ion yields show that photoexcitation of the precursor ions predominantly leads to . CH2 COOH radical side-chain losses of the macrocycle with additional methyl radical (. CH3 ) side-chain losses. Ionization, in contrast, leads to the formation of the intact ionized precursor and various doubly charged fragments which are mostly due to side-chain cleavages. Although statistical fragmentation dominates, we found evidence for non-statistical processes such as new fragments involving for example single and double H2 O losses, indicating that different relaxation mechanisms are at play upon photoionization compared to photoexcitation. The measured ionization energies were 9.6±0.2 eV, 9.4±0.2 eV and 9.6±0.2 eV for FePPIX+ , CoPPIX+ and ZnPPIX+ , respectively.


Assuntos
Metaloporfirinas , Cátions , Espectrometria de Massas , Análise Espectral , Raios Ultravioleta
5.
J Am Soc Mass Spectrom ; 32(3): 670-684, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33573373

RESUMO

Near-edge X-ray absorption mass spectrometry (NEXAMS) is an action-spectroscopy technique of growing interest for investigations into the spatial and electronic structure of biomolecules. It has been used successfully to give insights into different aspects of the photodissociation of peptides and to probe the conformation of proteins. It is a current question whether the fragmentation pathways are sensitive toward effects of conformational isomerism, tautomerism, and intramolecular interactions in gas-phase peptides. To address this issue, we studied the cationic fragments of cryogenically cooled gas-phase leucine enkephalin ([LeuEnk+H]+) and methionine enkephalin ([MetEnk+H]+) produced upon soft X-ray photon absorption at the carbon, nitrogen, and oxygen K-edges. The interpretation of the experimental ion yield spectra was supported by density-functional theory and restricted-open-shell configuration interaction with singles (DFT/ROCIS) calculations. The analysis revealed several effects that could not be rationalized based on the peptide's amino acid sequences alone. Clear differences between the partial ion yields measured for both peptides upon C 1s → π*(C═C) excitations in the aromatic amino acid side chains give evidence for a sulfur-aromatic interaction between the methionine and phenylalanine side chain of [MetEnk+H]+. Furthermore, a peak associated with N 1s → π*(C═N) transitions, linked to a tautomeric keto-to-enol conversion of peptide bonds, was only present in the photon energy resolved ion yield spectra of [MetEnk+H]+.


Assuntos
Encefalinas/química , Peptídeos/química , Espectroscopia por Absorção de Raios X/métodos , Encefalina Leucina/química , Encefalina Metionina/química , Modelos Moleculares , Estrutura Secundária de Proteína
6.
J Phys Chem Lett ; 11(4): 1215-1221, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31978303

RESUMO

Site-selective dissociation induced by core photoexcitation of biomolecules is of key importance for the understanding of radiation damage processes and dynamics and for its promising use as "chemical scissors" in various applications. However, identifying products of site-selective dissociation in large molecules is challenging at the carbon, nitrogen, and oxygen edges because of the high recurrence of these atoms and related chemical groups. In this paper, we present the observation of site-selective dissociation at the sulfur L-edge in the gas-phase peptide methionine enkephalin, which contains only a single sulfur atom. Near-edge X-ray absorption mass spectrometry has revealed that the resonant S 2p → σ*C-S excitation of the sulfur contained in the methionine side chain leads to site-selective dissociation, which is not the case after core ionization above the sulfur L-edge. The prospects of such results for the study of charge dynamics in biomolecular systems are discussed.


Assuntos
Gases/química , Peptídeos/química , Enxofre/química , Espectroscopia por Absorção de Raios X , Encefalinas/química , Metionina/química , Prótons , Teoria Quântica
7.
Phys Chem Chem Phys ; 21(45): 25415-25424, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31710320

RESUMO

Yields of atomic iodine Iq+ (q≥ 2) fragments resulting from photoexcitation and photoionisation of the target cations CHxI+ (x = 0-3) have been measured in the photon-energy range 610 eV to 670 eV, which comprises the threshold for iodine 3d ionisation. The measured ion-yield spectra show two strong and broad resonance features due to the excitation of the 3d3/2,5/2 electrons into εf states similar to atomic iodine. In the 3d pre-edge range, electrons are excited into molecular orbitals consisting of iodine, carbon, and hydrogen atomic orbitals. These transitions have been identified by comparison with literature data and by simulations using time-dependent density functional theory (TDDFT) with the KMLYP functional. The ion-yield spectrum for CH3I+ resembles the spectrum of IH+ [Klumpp et al., Phys. Rev. A, 2018, 97, 033401] because the highest occupied molecular orbitals (HOMO) of the H and CH3 fragments both contain a single vacancy, only. For the molecular cations with higher number of vacancies in the valence molecular orbitals CHxI+ (x = 0-2), a stronger hybridisation of the molecular orbitals occurs between the organic fragment and the iodine resulting in a change of bonding from a single σ bond in CH3I+ to a triple bond including two π orbitals in CI+. This is reflected in the resonance energies of the observed absorption lines below the iodine 3d excitation threshold.

8.
Phys Chem Chem Phys ; 21(30): 16505-16514, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31328754

RESUMO

Ion yields following X-ray absorption of the cationic series NHy+ (y = 0-3) were measured to identify the characteristic absorption resonances in the energy range of the atomic nitrogen K-edge. Significant changes in the position of the absorption resonances were observed depending on the number of hydrogen atoms bound to the central nitrogen atom. Configuration interaction (CI) calculations were performed to obtain line assignments in the frame of molecular group theory. To validate the calculations, our assignment for the atomic cation N+, measured as a reference, was compared with published theoretical and experimental data.

9.
J Synchrotron Radiat ; 25(Pt 5): 1517-1528, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179193

RESUMO

Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...